Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jaime Portilla, ${ }^{\text {a }}$ José M. de la Torre, ${ }^{\text {b }}$ Justo Cobo, ${ }^{\text {b }}$ John N. Low ${ }^{c}$ and Christopher Glidewell ${ }^{\mathrm{d}^{*}}$
${ }^{\text {a }}$ Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, ${ }^{\text {b }}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, ' Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ${ }^{\mathbf{d}}$ School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.121$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
6-(2-Hydroxybenzoyl)-2-(4-methylphenyl)-5-methyl-7-phenylpyrazolo[1,5-a]pyrimidine: complex sheets built from $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

The molecules of the title compound, $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$, contain an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, and they are linked into complex sheets by a combination of two $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

We report here the structure of the title new pyrazolo[1,5a]pyrimidine, (I) (Fig. 1), prepared under solvent-free conditions from the reaction between a 5 -aminopyrazole and a 2 benzoylchromone.

(I)

The bond distances in the pyrazolo[1,5-a]pyrimidine fragment (Table 1) are typical of this ring system (Portilla et al., 2005,2006) and they are consistent with $10-\pi$ electron delocalization reminiscent of the naphthalene type. The aryl ring at C2 is almost coplanar with the heterocyclic system, but the substituents at C6 and C7 are considerably twisted out of this plane, probably to avoid mutually repulsive interactions between their aryl rings (Table 1).

There is a fairly short intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, but the supramolecular aggregation of (I) depends solely on rather long, and thus fairly weak, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), which link the molecules into complex sheets. The formation of the sheet can be readily analysed in terms of its simple sub-structures.

Aryl atom C74 in the molecule at (x, y, z) acts as hydrogenbond donor to hydroxyl atom O62 in the molecule at ($1-x$, $-y, 1-z$), so generating by inversion a centrosymmetric $R_{2}^{2}(22)$ (Bernstein et al., 1995) dimer centred at $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ (Fig. 2), and these dimers are linked by the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Atoms C 3 and C 22 in the molecule at (x, y, z) and $(1-x,-y$, $1-z$) both act as hydrogen-bond donors to the atoms N 4 in the molecules at $\left(\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$ and $\left(-\frac{1}{2}+x,-\frac{1}{2}-y,-\frac{1}{2}+z\right)$, which themselves lie in the $R_{2}^{2}(22)$ dimers centred at $\left(1, \frac{1}{2}, 1\right)$

Figure 1
The molecular structure of compound (I), showing the atom-labelling scheme and the intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Part of the crystal structure of compound (I), showing the formation of an $R_{2}^{2}(22)$ dimer. For the sake of clarity, H atoms bonded to C atoms but not involved in the motifs shown have been omitted. Similarly, the unit-cell outline has been omitted. Atoms marked with an asterisk (*) are at the symmetry position $(1-x,-y, 1-z)$.

Figure 3
A stereoscopic view of part of the crystal structure of compound (I), showing the formation of a chain of rings along [111]. For the sake of clarity, H atoms bonded to C atoms but not involved in the motifs shown have been omitted.
and $\left(0,-\frac{1}{2}, 0\right)$, respectively. Propagation of these hydrogen bonds then generates a chain of rings along [111], in which $R_{2}^{2}(22)$ rings alternate with $R_{2}^{1}(7)$ rings (Fig. 3).

Finally, aryl atom C76 in the molecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O67 in the molecule at $(x, 1+y, z)$, so generating by translation a $C(7)$ chain running parallel to the [010] direction. The combination of [010] and [111] chains generates a sheet parallel to ($10 \overline{1}$), but there are no direction-specific interactions between adjacent sheets.

Experimental

Equimolar quantities (1.0 mmol of each component) of 3-(4-methylphenyl)-5-amino- $1 H$-pyrazole and 3-benzoyl-2-methylbenzo-4-pyrone were placed in an open Pyrex glass vessel and heated in an oil-bath at 373 K for 2 min . The reaction mixture was then cooled and extracted with ethanol. After removal of the solvent, the product, (I), was recrystallized from dimethylformamide to give yellow crystals suitable for single-crystal X-ray diffraction (m.p. $471-473 \mathrm{~K}$, yield 60%).

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$	$Z=8$
$M_{r}=419.47$	$D_{x}=1.338 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=38.7649(11) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$b=6.7864(2) \AA$	$T=120(2) \mathrm{K}$
$c=16.7002(5) \AA$	Lath, yellow
$\beta=108.599(2)^{\circ}$	$0.80 \times 0.50 \times 0.20 \mathrm{~mm}$
$V=4163.9(2) \AA^{3}$	

Data collection

Bruker Nonius KappaCCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\text {min }}=0.964, T_{\text {max }}=0.983$

30599 measured reflections 4751 independent reflections 3797 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0575 P)^{2} \\
&+3.7732 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

organic papers

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O62-H62 \cdots O67	0.96	1.68	$2.554(2)$	150
C3-H3 $\cdots \mathrm{N}^{\mathrm{i}}$	0.95	2.61	$3.543(2)$	168
C22-H22 N^{i}	0.95	2.57	$3.513(2)$	174
C74-H74 O^{ii}	0.95	2.55	$3.422(2)$	154
C76-H76 \cdots O67 $^{\text {iii }}$	0.95	2.56	$3.444(2)$	155

Symmetry codes: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+1,-y,-z+1$; (iii) $x, y+1, z$.

All H atoms were located in a difference map and then treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic) or $0.98 \AA$ (methyl) and an $\mathrm{O}-\mathrm{H}$ distance of $0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{O})$, where $x=$ 1.5 for the methyl groups and 1.2 for all other H .

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: $D E N Z O$ and $C O L L E C T$; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK. JC and JT
thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JT also thanks the Universidad de Jaén for a research scholarship supporting a short stay at the EPSRC X-ray Crystallographic Service, University of Southampton, UK. JP thanks COLCIENCIAS, UNIVALLE (Universidad del Valle, Colombia), for financial support.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Portilla, J., Quiroga, J., Cobo, J., Low, J. N. \& Glidewell, C. (2005). Acta Cryst. C61, o452-o456.
Portilla, J., Quiroga, J., Cobo, J., Low, J. N. \& Glidewell, C. (2006). Acta Cryst. C62, o186-o189.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

